Efficient algorithms for robust and stable principal component pursuit problems

نویسندگان

  • Necdet Serhat Aybat
  • Donald Goldfarb
  • Shiqian Ma
چکیده

Abstract. The problem of recovering a low-rank matrix from a set of observations corrupted with gross sparse error is known as the robust principal component analysis (RPCA) and has many applications in computer vision, image processing and web data ranking. It has been shown that under certain conditions, the solution to the NP-hard RPCA problem can be obtained by solving a convex optimization problem, namely the robust principal component pursuit (RPCP). Moreover, if the observed data matrix has also been corrupted by a dense noise matrix in addition to gross sparse error, then the stable principal component pursuit (SPCP) problem is solved to recover the low-rank matrix. In this paper, we develop efficient algorithms with provable iteration complexity bounds for solving RPCP and SPCP. Numerical results on problems with millions of variables and constraints such as foreground extraction from surveillance video, shadow and specularity removal from face images and video denoising from heavily corrupted data show that our algorithms are competitive to current state-of-the-art solvers for RPCP and SPCP in terms of accuracy and speed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Principal Component Analysis by Projection Pursuit

Different algorithms for principal component analysis (PCA) based on the idea of projection pursuit are proposed. We show how the algorithms are constructed, and compare the new algorithms with standard algorithms. With the R implementation pcaPP we demonstrate the usefulness at real data examples. Finally, it will be outlined how the algorithms can be used for robustifying other multivariate m...

متن کامل

Bayesian methods for sparse and low-rank matrix problems pdfsubject=Doctoral Thesis

Many scientific and engineering problems require us to process measurements and data in order to extract information. Since we base decisions on information, it is important to design accurate and efficient processing algorithms. This is often done by modeling the signal of interest and the noise in the problem. One type of modeling is Compressed Sensing, where the signal has a sparse or low-ra...

متن کامل

An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case

Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...

متن کامل

Spatio-Temporal Auxiliary Particle Filtering With ℓ1-Norm-Based Appearance Model Learning for Robust Visual Tracking

In this paper, we propose an efficient and accurate visual tracker equipped with a new particle filtering algorithm and robust subspace learning-based appearance model. The proposed visual tracker avoids drifting problems caused by abrupt motion changes and severe appearance variations that are well-known difficulties in visual tracking. The proposed algorithm is based on a type of auxiliary pa...

متن کامل

Algorithms for projection-pursuit robust principal component analysis

Principal Component Analysis (PCA) is very sensitive in presence of outliers. One of the most appealing robust methods for principal component analysis uses the Projection-Pursuit principle. Here, one projects the data on a lower-dimensional space such that a robust measure of variance of the projected data will be maximized. The Projection-Pursuit based method for principal component analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2014